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Abstract
The structural relations between carbon polymorphs are described as
reconstructive phase transitions with displacive mechanisms occurring via a
common substructure. The polymorphs are shown to correspond to limit
states resulting from critical fractional displacements and critical strains.
The transition order-parameters are defined as periodic functions of the
displacements.

(Some figures in this article are in colour only in the electronic version)

Because of the technological importance of hexagonal graphite and cubic diamond, the phase
diagram of carbon has been investigated intensively for many decades. Despite this effort
the transformation mechanism from graphite to diamond is not yet fully understood. In
particular the role played in this mechanism by rhombohedral graphite [1] or hexagonal
diamond [2] is still questioned. On theoretical grounds the different models proposed for the
graphite–diamond transition [3–9] involve a hybridization change for the bonding electrons,
and structural mechanisms describing the conversion from one structure to the other in terms
of reordering in the hexagonal layer stacking, supplemented by macroscopic strains. However,
to our knowledge there exists no description of the structural mechanisms leading to the carbon
allotropes as symmetry breaking processes. In this study we show that the structural changes
between carbon polymorphs can be described in a unified way as reconstructive transitions
of the displacive type, the transitions occurring via a common substructure of monoclinic or
orthorhombic symmetry. In this description the polymorphs appear as limit states resulting
from definite critical displacements and critical strains. The critical displacements are shown
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Figure 1. Structural mechanisms for the reconstructive phase transitions between carbon
polymorphs via a common substructure: (1) HG → HD ((a) → (d) → (h)), (2) HG → CD
((a) → (e) → (i)), (3) HG → RG ((a) → (b) → (c)), (4) RG → CD ((c) → (f) → (i)) and (5)
RG → HD ((c) → (g) → (j)). The conventional hexagonal (HG, RG and HD) and cubic (CD)
unit-cells are represented by thick lines in (a), (c), (h), (j) and (i). The unit-cells of their common
substructures are shown in all figures by thin lines. The small arrows in (b), (d), (e), (f) and (g)
represent the real magnitudes of the atomic displacements.

to coincide with minima of the effective free-energies, formed as polynomial expansions of the
order-parameters defined as periodic functions of the displacements.

Figure 1 represents the assumed displacive mechanisms transforming hexagonal graphite
(HG), rhombohedral graphite (RG), hexagonal diamond (HD) and cubic diamond (CD) into
each other. Figures 1(a), (c), (h) and (i) show that the carbon structures possess a common
substructure displaying an orthorhombic Cmcm (HG), Bmmb (HD) or monoclinic C2/m
(RG, CD) symmetry, whose basic vectors (a, b, c) are related with the basic vectors of the
conventional hexagonal (HG, RG, HD) or cubic (CD) unit-cells of the different allotropes by:

a = aHG = aRG = −aHD = 1/2(a + b)CD

b = (a + 2b)HG = (a + 2b)RG = cHD = −1/2(a + b − 2c)CD

c = cHG = 1/3(a + 2b + 2c)RG = (a + 2b)HD = 1/2(a + b + 2c)CD

(1)

in accordance with the observed orientational relations reported in [10] that [001]HG ‖ [120]HD,
[100]HG ‖ [100]HD and [120]HG ‖ [001]HD. The lattice parameters of the transformed unit-cells
are given in table 1. The atomic displacement field transforming HG into HD is shown in the
figures 1(a) → (d) → (h). It consists of antiparallel fractional displacements: ± 1

16 b and ± 1
12 c,

combined with ± 5
48 b and ± 1

12 c, the carbon atoms initially in 2b and 2c positions of P63/mmc
being shifted to positions 4f. The HG → HD transition involves a drastic compression of about
35% along c and small decompression (2%) and compression (6%) along a and b, respectively.
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Table 1. Lattice parameters of the conventional unit-cells and the common substructure calculated
after (1) for the carbon polymorphs.

Polytype a (Å) b (Å) c (Å) α γ Space group

HG 2.464 2.464 6.708 120 P63/mmc
2.464 4.268 6.708 Cmcm

RG 2.456 2.456 10.041 120 R3̄m
2.456 4.254 6.843 78.040 C2/m

HD 2.522 2.522 4.119 120 P63/mmc
2.522 4.119 4.369 Bmmb

CD 3.567 3.567 3.567 Fd3̄m
2.522 4.368 4.368 70.529 C2/m

A similar mechanism, represented in figures 1(a) → (e) → (i), holds for the HG → CD
transition. Starting from the transformed unit-cell of HG, the CD structure results from a
reduction of the angle α from 90◦ in HG to 70.529◦ in CD, and a set of antiparallel fractional
displacements: ± 1

16 b and ± 1
16 c, combined with ± 5

48 b and ± 1
16 c. The CD unit-cell, in

which the carbon atoms occupy the positions 8a of space group Fd 3̄m, is deduced from the
monoclinic unit-cell by shifting the origin by p = (0, 1

16 ,
5

16 ), a large compression of 35%
along c and small decompressions (2%) along a and b.

Natural graphite, as well as synthetic samples, may contain up to 30% of rhombohedral
graphite (RG) in combination with HG. Although RG is considered as an unstable allotrope
of graphite, or as an extended stacking fault, it has been often invoked in the transformation
mechanisms between carbon polymorphs [6, 8, 11]. The HG → RG transition mechanism,
shown in figures 1(a) → (b) → (c), consists of a reduction of α from 90◦ in HG to 78.040◦ in
RG, and of fractional displacements of the carbon atoms by ± 1

12 b (figure 1(b)). The hexagonal
RG unit-cell (figure 1(c)) is deduced from the monoclinic unit-cell by shifting the origin by
p = (0, 1/2, 0).

The HD and CD structures can be obtained from RG as shown in figures 1(c) → (f) → (i)
and figures 1(c) → (d) → (j). The RG → HD transition requires an increase of α from
78.040◦ to 90◦, and antiparallel displacements, shown in figure 1(g), by ± 1

48 b and ± 1
12 c. It

yields the HD unit-cell (figure 1(j)), which involves compressions along c (36%) and b (3%)
and decompression along a (3%). The RG → CD transition follows a similar scheme with a
reduction of α from 78.040◦ to 70.529◦ and antiparallel displacements (figure 1(f)) by the ± 1

24 c
fractions, with a compression along c (36%) and decompressions (3%) along a and b.

In terms of a Landau symmetry analysis the order-parameters associated with the
transitions from HG to the other carbon polymorphs are of two types. (1) Macroscopic
strains which consist of (i) the shear strain eyz , which expresses the changes in the angle
α and reduces the hexagonal HG symmetry to monoclinic, (ii) the tensile strain exx − eyy

corresponding to an orthorhombic deformation of the hexagonal cell, (iii) the non-symmetry-
breaking component ezz which accounts for the compression along c. (2) A cooperative set of
fractional symmetry-breaking displacements along b and c. Both types of order-parameter
are activated for obtaining the polymorphic structures which appear as limit states arising
for definite atomic displacements and critical strains. This is consistent with the theoretical
approach proposed for reconstructive phase transitions of the displacive type [12, 13] in which
the critical displacements coincide with extrema of the effective order-parameters defined
as periodic functions of the displacements. The periodic character of the reconstructive
transition mechanisms is shown in figure 2, in which the order-parameter η is plotted as a
function of the atomic displacements ξ along the [120] direction in HG. The periodic function
η(ξ) representing the effective order-parameter associated with the HG → (HD, CD, RG)
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Figure 2. Periodic dependence (red (dark grey) curve) of the effective transition order-parameter
η(ξ), defined by (2), associated with the transitions from hexagonal graphite (HG) to rhombohedral
graphite (RG), cubic (CD) and hexagonal (HD) diamonds, in function of the displacements ξ along
[120]HG. The curve in blue (black) represents the periodicity of the displacements giving rise to
the RG structure (first term in (2)). The green (light grey) curve is a higher harmonic (second
term in (2)) whose periodicity reflects the onset of the HD and CD structures from HG and RG,
respectively.

transitions is the truncated Fourier series:

η(ξ) = 0.958 sin(6πξ) + 0.125 sin(42πξ). (2)

The first term in (2) expresses the ‘primary’ symmetry-breaking displacements giving
rise to the RG structure from HG, and the second term is a higher harmonic related to
secondary symmetry-breaking displacements leading to the HD and CD structures from HG
and RG, respectively. Taking into account the transformation properties of the displacements ξ

leading to the HD, CD and RG structures, by the symmetry operations of the HG space group
(P63/mmc), yields two distinct effective free-energies: F1(η(ξ)) = α

2 η2 + β

4 η4 + γ

6 η6, for the

HG → (RG, HD) transitions, and F2(η(ξ)) = α′
2 η2+ β ′

3 η3+ γ ′
4 η4 for the HG → CD transition.

Minimization of F1 and F2 with respect to ξ provides the critical displacements ξ c at which the
RG, HD and CD phases arise. Their fractional character can be viewed by decomposing ξ c into
the critical displacements ξ c

1 (along [120]HG) and ξ c
2 (along [001]HG). Minimizing F1 yields the

equation of state: η
∂η

∂ξ
(α + βη2 + γ η4) = 0, which gives four possible stable phases. (i) The

HG phase for η = 0, for the successive critical displacements (expressed in b units for ξ c
1 and

c units for ξ c
2 ): ξ c

1 = ±(0, 1/6, 1/3, 1/2, 2/3, 5/6, . . .), ξ c
2 = 0; (ii) the HD phase for ∂η

∂ξ
= 0

and ξ c
1 = ±(1/16, 5/48, 19/48, 7/16, 9/16, 29/48, 43/45, 15/16, . . .), ξ c

2 = ±1/12; (iii) the
RG phase for ∂η

∂ξ
= 0 and ξ c

1 = ±(1/12, 5/12, 7/12, 11/12, . . .), ξ c
2 = 0; (iv) the monoclinic

P2/m (HG → HD) or C2/m (HG → RG) phases for η = ±[ 1
2γ

(−β + √
β2 − 4αγ ]1/2 and

non-critical displacements ξ1 and ξ2. Minimization of F2 with respect to ξ leads to: (i) the
HG phase; (ii) the CD phase for ∂η

∂ξ
= 0 and the same critical values of ξ c

1 stabilizing HD but
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Figure 3. Theoretical phase diagrams corresponding to the minimization of the (a) F1 and (b) F2

Landau free-energies with respect to the displacements ξ . Solid, dashed and dashed–dotted lines
represent, respectively, first-order transition, second-order transition and limit of stability lines. The
hatched areas are regions of phase coexistence. N is a three-phase point. Tr is a tricritical point.
The arrows suggest the thermodynamic paths followed in carbon.

with ξ c
2 = ±1/16; (iii) the monoclinic C2/m phase for η = 1

2γ ′ (−β ′ ± √−β ′ − 4α′γ ′) and
non-critical displacements.

Theoretical phase diagrams associated with F1 and F2 are shown in figures 3(a) and (b). In
figure 3(a) the monoclinic phase can be reached from HG and (HD or RG) across second-order
transitions whereas the HG → (HD or RG) reconstructive transitions are always first-order.
The phase diagram of figure 3(b) reveals the existence of two anti-isostructural CD structures
(denoted + and −), associated with opposed signs of η.

In summary, starting from the HG (or RG) structure the carbon allotropes have been
described as resulting from displacive mechanisms combined with macroscopic strains. In
these mechanisms the polymorphs appear as limit states stabilizing for definite critical
displacements and critical strains. This interpretation was justified by expressing the
effective transition order-parameters as periodic functions of the displacements, the critical
displacements corresponding to minima of the free-energies and to extrema of the order-
parameters.

The description of the formation of the carbon polymorphs in terms of displacive processes
is in contrast with the current interpretations [6, 8, 13] which assume ordering mechanisms.
Ordering processes are suggested by the possibility of organizing the carbon structures as
different stacking of hexagonal layers and the transitions between them as a reordering in the
layer stacking. Combined ordering and compression mechanisms allow one to describe the
HG → CD or the HG → RG transitions [6], but fail to explain the formation of HD because
of its orientational relationship with respect to HG. The different orientations of the hexagonal
layers reported in cubic and hexagonal diamonds, with respect to HG, is essential in favour
of a displacive mechanism. The fact that similar critical displacements, involving the same
intermediate substructure, yield the variety of carbon polymorphs is another argument in favour
of our proposed displacive approach.

This approach suggests an explanation of the simplicity of the equilibrium phase diagram
of carbon, which contains only the HG and CD phases, as compared to the rich polymorphism
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found in the phase diagrams of other IVa elements [14] such as Si, Ge or Sn. Starting from
the ambient pressure HG phase, the thermodynamic path assumed for the HG → CD transition
differs from the paths leading to HD or RG, a further transition from CD to another structure
being unlikely due to the limit character of the CD structure which makes it less sensitive to
the influence of temperature or pressure. The left-or-right-hand side of the theoretical phase
diagram of figure 3(b), which exhibits only the HG and CD phases, reflects the topology of the
experimental phase diagram of carbon. The anti-isostructural CD variant may coincide with the
cubic n-diamond structure, obtained by rapid cooling from graphite sheet shock-compressed to
65 GPa [15], which is composed of hexagonal-ring planes puckered in the opposite direction
with respect to CD [16]. This is consistent with the opposite signs of the corresponding order-
parameters.
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